Rapid forecasting of hydrogen concentration based on a multilayer CNN-LSTM network

Author:

Shi Yangyang,Ye Shenghua,Zheng YangongORCID

Abstract

Abstract Gas sensors with rapid response are desirable in many safety applications. Reducing the response time of gas sensors is a challenging task. Computing a part of the initial temporal signals of gas sensors based on neural networks is an effective and powerful method for forecasting sensors’ output. To rapidly and robust forecasting hydrogen concentration, a sensor array is composed of a temperature and humidity sensor, and two hydrogen sensors. A neural network combined with convolutional neural networks and long-short-term memory networks is proposed to fuse temporal signals of the sensor array to forecast hydrogen concentrations. The structure of the neural network is optimized by increasing its depth. For the optimal neural network, the lowest mean absolute percent error is about 12.8% by computing initial 30 s of transient signals within 300–400 s response curves, the predicted mean absolute error is 1158 ppm in the testing range of 18 000 ppm. When the time span of initial transient signals of the sensor array increase to 150 s for the computing, the mean absolute percent error decreases to 5.7%. This study verifies the potential and effectiveness of the neural network for concentration forecasting by computing the temporal signals of the sensors.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Ningbo

Opening Project of Key Laboratory of Microelectronic Devices & Integrated Technology

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3