Flow visualization: state-of-the-art development of micro-particle image velocimetry

Author:

Etminan AminORCID,Muzychka Yuri S,Pope Kevin,Nyantekyi-Kwakye Baafour

Abstract

Abstract Experimental flow visualization is a valuable tool for analyzing microfluidics and nanofluidics in a wide variety of applications. Since the late 1990s, considerable advances in optical methods and image postprocessing techniques have improved direct optical measurements, resulting in an accurate qualitative and quantitative understanding of transport phenomena in lab-on-a-chip capillaries. In this study, a comparison of different optical measurement techniques is presented. The state-of-the-art development of particle image velocimetry (PIV) to date, particularly in microscale applications, is reviewed here in detail. This study reviews novel approaches for estimating velocity field measurements with high precision within interrogation windows. Different regularization terms are discussed to demonstrate their capability for particle displacement optimization. The discussion shows how single- and multi-camera optical techniques provide two-dimensional and three-component velocity fields. The performance of each method is compared by highlighting its advantages and limitations. Finally, the feasibility of micro resolution PIV in bioapplications is overviewed.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3