A multi-population state optimization algorithm for rail crack fault diagnosis

Author:

Liu MengmengORCID

Abstract

Abstract The rails usually work in complex environments, which makes them more prone to mechanical failures. In order to better diagnose the crack faults, a multi-population state optimization algorithm (MPVHGA) is proposed in this paper, which is used to solve the problems of low efficiency, easy precocity, and easy convergence of local optimal solutions in traditional genetic algorithms. The detection results of fault signals show that MPVHGA has the advantages of fast convergence rate, high stability, no stagnation, and no limitation of fixed iterations number. The average iterations number of MPVHGA in 100 independent iterations is about 1/5 of the traditional genetic algorithm (SGA for short) and about 1/3 of the population state optimization algorithm (VHGA for short), and the total convergence number of MPVHGA converges to 55 and 10 more than SGA and VHGA respectively, and the accuracy of fault diagnosis can reach 95.04%. On the basis of improving the performance of simple genetic algorithm, this paper provides a new detection method for rail crack fault diagnosis, which has important engineering practical value.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3