MEMS-based electronic nose system for measurement of industrial gases with drift correction methodology

Author:

Gawande TusharORCID,Deshmukh Raghavendra,Deshmukh SharvariORCID

Abstract

Abstract This work explores the use of microelectromechanical system (MEMS) sensors in electronic nose systems for the measurement of prominent industrial pollutants and proposes a methodology for the correction of drift induced in sensors during prolonged use for measurement of corrosive compounds. MEMS sensors have the advantages of low recovery and response time, lower power consumption and improved sensitivity. An electronic nose system is developed to quantify the four major pollutants emitted from various process industries, i.e. hydrogen sulfide (H2S), carbon monoxide (CO), ammonia (NH3) and ethanol (C2H5OH). All four pollutants represent major environmental and human health hazards and rapid quantification is vital. A drift correction algorithm was developed using experimental design and robust regression to correct the drift induced in the sensors. The experiments consisted of eight experimental sets with mixtures of H2S, CO, NH3 and C2H5OH measured on the same sensor array at the start and after a gap of 1 year. The methodology consisted of mapping the response of sensors after 1 year compared with that observed at the very start (day 1) of the experiment. The results showed successful implementation of the methodology, with the root mean square error values being significantly reduced at 0.235, 0.354, 0.145 and 0.651, respectively, for the four studied odorants (H2S, NH3, CO, and C2H5OH).

Funder

Department of science and technology

Visvesvaraya National Institute of Technology Nagpur, Maharashtra

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Reference40 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electronic nose and its application in the food industry: a review;European Food Research and Technology;2023-10-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3