Visual localization and quantitative detection method for thermal defects in cable terminals of high-speed trains based on a temperature derivative

Author:

Liu KaiORCID,Jiao ShiboORCID,Nie Guangbo,Gao Bo,Yang Zhixiang,Xin Dongli,Wu Guangning

Abstract

Abstract Cable terminal defect detection plays an important role in ensuring the safe and stable operation of high-speed trains. In this paper, a numerical model of the electromagnetic thermal field of overheating defects of cable terminal shielding grids and a method of detecting internal defects of cable terminals—even-order temperature derivative is proposed for quantitative detection of internal defective structures of vehicle-mounted cable terminals. Firstly, a numerical model of the electromagnetic thermal field of cable terminals under the condition of leakage current is constructed, through which the temperature field distribution characteristics of different defective structures are analyzed. Then, the intuitive location of the defective region is obtained by investigating the derivative characteristics of the temperature image, and the depth and intensity of the defects are quantitatively assessed by using the main side peak (MSP) distances and the MSP values extracted from the derivative curves. Finally, the simulation and experimental results achieve the identification of defect structures and the quantitative detection of defect depth and intensity, proving the effectiveness and accuracy of the proposed method.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3