In situ scanning–digital image correlation for high-temperature deformation measurement of nickel-based single crystal superalloy

Author:

Xie HongfuORCID,Wang Jie,Wang Zhen,Zhao Chong,Liang Jiecun,Li Xide

Abstract

Abstract In situ microscopic observation and measurement of deformations for advanced hot-section materials at high-temperature is helpful in understanding their failure mechanisms. Scanning electron microscopy (SEM) and a digital image correlation (DIC) method are combined to capture the failure process. This article reports an in situ high-temperature testing system which can heat the specimen up to 1000 °C and provide clear images simultaneously. The Al2O3 nanoscale particles are developed as high-temperature deformation carriers in SEM–DIC, which are suitable for high-temperature samples with significant advantages of stability, high image contrast and without shedding or melting up to 1000 °C. High-temperature tensile and creep properties of a nickel-based single crystal superalloy (NBSCS) at 750 °C were investigated using this system. In addition, a scanning–DIC (S–DIC) method, which avoids errors introduced by conventional DIC methods, was used to calculate full-field dynamic displacement and strain of high-temperature NBSCS samples. Analysis of the strain fields show that the strain concentrations are generally at the positions of crack initiation or propagation, and the creep cracks interact with each other through the strain field. Finally, the crack opening displacement is obtained using the virtual extensometer.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3