A new test method for evaluating the evaporative cooling efficiency of fabrics using a dynamic sweating hot plate

Author:

Gao HuipuORCID,Shawn Deaton A,Barker Roger

Abstract

Abstract The lack of direct measures of the ability of a fabric to cool the skin by liquid sweat evaporation is a critical gap in available laboratory tests for evaluating the comfort of active wear clothing materials. This paper describes a novel method designed to evaluate the evaporative cooling performance of fabrics in a protocol that simulates active wear, including sweating and drying periods, in a continuous one-step procedure. It uses a dynamic sweating hot plate to measure the latent heat absorbed by fabrics in sweat evaporation, and in drying after sweat absorption. The efficacy of the method is demonstrated using a selected set of high-wicking polyester and a cotton knit t-shirt material that have different moisture absorption, wicking and drying properties. The cooling efficiency test shows that high-wicking polyester fabrics provide larger evaporative cooling in the sweating phase, where it is more likely to convey cooling benefits to the skin. Cotton fabrics absorb more latent heat in the drying phase, where the cooling effect may contribute to chilling effects. It provides an ideal platform to observe the dynamic relationship between patterns of wicking and liquid moisture spreading in fabrics and the evaporative cooling provided by the test materials. It shows that the location of wicked moisture in the fabric is a critical determinant of potential cooling effects. It also shows that a fabric’s wicking ability is not always an accurate predictor of its cooling efficiency. This new test method has provided a unique tool for directly characterizing the cooling efficiency of clothing materials using a protocol that accurately simulates sweating generation and drying in actual active wear scenarios.

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Reference40 articles.

1. Standard test method for thermal and evaporative resistance of clothing materials using a sweating hot plate

2. Vertical wicking of textiles

3. Liquid moisture management properties of textile fabrics

4. Water vapor transmission of textiles

5. Drying rate of fabrics: heated plate method

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3