Method for the P-wave arrival pickup of rock fracture acoustic emission signals under strong noise

Author:

Luo JunhuaORCID,Bespal’Ko Anatoly Alekseevich,Lu Di,Li Baocheng

Abstract

Abstract This research aimed to investigate the accuracy of picking of P-wave arrival times in rock fracture acoustic emission signals. In order to simulate the mining scenario, Gaussian white noise and pulse noise were added to the data collected in the laboratory. Complete ensemble empirical mode decomposition with adaptive noise + Wavelet (CEEMDAN + Wavelet) was improved in this paper, where the Spearman rank correlation coefficient was adopted to effectively select intrinsic mode functions for denoising which retained the inherent characteristics of the rock fracture signal. The absolute amplitude and energy change rate of the envelope signal, calculated based on the Hilbert transform, were used as the input of the short term average/long term average (STA/LTA) normalization algorithm to pickup the P-wave arrival time. The reliability of this method was tested on 30 groups of recorded rock fracture laboratory data and 60 groups of added noise data. Taking the manual pickup results as the standard, the errors of CEEMDAN + Wavelet + STA/LTA + AIC (Akaike information criterion) method with the absolute amplitude of the signal as the input are all within 10 ms, and 86.67% of the results are within 5 ms. The method proposed in this paper effectively addressing the issue of false pickup caused by the sensitivity of AIC and traditional STA/LTA method for strong noise, and achieving relatively high accuracy and stability in processing low signal-to-noise ratio signals. This work contributes to monitor microscopic changes in rock bodies and is of great significance for the prediction and monitoring of geological disasters.

Publisher

IOP Publishing

Reference19 articles.

1. Automatic earthquake recognition and timing from single traces;Allen;Bull. Seismol. Soc. Am.,1978

2. Information theory and an extension of the maximum likelihood principle;Akaike,1998

3. PAI-S/K: a robust automatic seismic P phase arrival identification scheme;Saragiotis;IEEE Trans. Geosci. Remote Sens.,2002

4. Arrival picking of acoustic emission signals using a hybrid algorithm based on AIC and histogram distance;Chen;IEEE Trans. Instrum. Meas.,2021

5. Improvement of autoregressive model-based algorithms for picking the arrival times of the P-wave of rock acoustic emission;Wang;Geotech. Geol. Eng.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3