Validation of phosphor thermometry for industrial surface temperature measurements

Author:

Rosso LuciaORCID,Tabandeh Shahin,Beltramino GiulioORCID,Fernicola Vito

Abstract

Abstract Surface temperature measurements are required by the aerospace and automotive industries to guarantee high-quality products and optimize production processes. Accurate and reliable measurement of surface temperature is very challenging in an industrial environment. Surface contact probes are widely used but poorly characterized, while non-contact infrared thermometry is severely hampered by the unknown emissivity of the surface and by problems caused by stray radiation from the background. An alternative approach to the above techniques is phosphor thermometry, used here in a hybrid contact/non-contact approach. In this work, the development of a lifetime-based phosphor thermometer, its application to industrial surface temperature measurement and its validation are reported in a metrologically sound manner. The phosphor thermometer was initially calibrated by contact on a reference calibrator system at the Istituto Nazionale di Ricerca Metrologica to provide SI traceability to the measurements at the industrial level; the system was later validated by exploiting a metal phase-change method. The robustness of the approach against a strong radiative background was also investigated. A comprehensive uncertainty analysis was carried out, resulting in an expanded uncertainty (k  =  2) lower than 1.4 °C over the temperature range from the ambient to 450 °C. The phosphor-based thermometer was then tested at industrial manufacturing premises to measure the surface temperature of aluminium alloy billets during the pre-heating phase before forging. The phosphor-based approach was compared with radiation and contact thermometry in both static and dynamic measurement conditions. The experimental results proved that phosphor thermometry, besides being a valid alternative to conventional techniques, may offer better performance in an industrial setting.

Funder

European Association of National Metrology Institutes

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3