Relativistic effects of LEO satellite and its impact on clock prediction

Author:

Wu MeifangORCID,Wang KanORCID,Liu Jiawei,Zhu Yuncong

Abstract

Abstract Low Earth orbit (LEO) augmentation in the global navigation satellite system has become a focus in the current satellite navigation field. To achieve high precision in positioning, navigation and timing services, relativistic effects should be considered, as they are difficult to distinguish from LEO satellite clock estimates and disturb their predictions. The relativistic effects on LEO satellite clocks are discussed in detail based on both theoretical and empirical results. Two LEO satellite clock prediction strategies are proposed, with and without removing the relativistic effect, using real data from typical LEO satellites: SENTINEL-3B and Gravity Recovery and Climate Experiment Follow-On (GRACE FO-1). For GRACE FO-1 and SENTINEL-3B, the relativistic effects are both on the order of nanoseconds and after removing the relativistic effects, the modified Allan deviations of the clocks are shown to be significantly improved. Based on the prediction strategies proposed, for SENTINEL-3B at around 810 km, with the prediction period increased from 30 to 3600 s, the root mean square error (RMSE) increases from 0.025 ns to about 1.4–1.6 ns. For the lower LEO satellite GRACE FO-1 at around 500 km, the RMSE of the predicted clocks increases more rapidly, i.e. from 0.012 ns at 30 s to about 4.5 ns at 3600 s. Results showed that the LEO satellite relativistic effects developed based on the theory could correct the majority, but not all of the once- and twice-per-revolution terms in the LEO satellite clocks. Although the corrections have exhibited effective improvements in the clock stability, they do not behave better than simply applying the mathematical model to the clock predictions. The latter model, however, does not have physical foundations as the former one.

Funder

Key R&D Program of Shaanxi Province

National Natural Science Foundation of China

National Time Service Center, Chinese Academy of Sciences

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3