Experimental validation and uncertainty analysis of an innovative IoT infrared sensor for in-situ wall thermal transmittance measurement

Author:

Serroni SerenaORCID,Arnesano MarcoORCID,Martarelli Milena,Revel Gian Marco

Abstract

Abstract This paper presents the development and experimental validation of an Internet of Things (IoT) thermography system for in-situ and real-time monitoring of wall thermal transmittance. The solution proposed has been derived from the upgrade of the Comfort Eye sensor, which is an infrared-based sensor adopted for non-intrusive indoor environmental quality monitoring in occupied buildings. In this work, the system has been used to detect potential building envelope inefficiencies and track building performance trends in a continuous way. The methodology is based on the ISO 9869-2 standard but it has been applied to an entire wall and during its normal functioning without the need of operators. The data management has been performed with a dedicated IoT architecture that allows the synchronised collection of quantities required for transmittance calculation, i.e. indoor and outdoor air temperatures together with the thermographic maps of the wall. The measurement technique has been validated in a real building through the comparison with the results obtained using a heat flux meter (HFM). An uncertainty analysis with Monte Carlo simulation has also been performed to evaluate the overall uncertainty of the method. The values obtained are coherent with those measured with the HFM and the infrared system has proved to be able to provide thermal transmittance measurements with an expanded uncertainty of ±0.038 W m−2K−1 with coverage factor k = 2. The innovative methodology described can be used for U-value estimation without the need for extra measuring tools.

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3