Efficient indoor localization with wireless sensor networks via learnable sparse coding

Author:

Li XiangORCID

Abstract

Abstract In this study, the indoor localization problem for human movement is built as a sparse representation, and a learnable sparse coding algorithm is proposed by introducing a nonconvex penalty function as the sparse constraints. The good properties of the penalty are able to help reduce the iteration cost to find a sparse solution indicating the target locations. The sparse code can achieve its optimal value from the trained neural network model with parametrization. It is instead of a piece of algorithmic processing in the conventional methods requiring a large iteration. A real-world experiment using a Bluetooth low energy wireless sensor network validates the proposed method and shows the improvement of the error reduction at the first five iteration points on average compared to iterative shrinkage and thresholding algorithm (ISTA), and achieves competitive performance in the localization tasks for learned-ISTA-based algorithms.

Funder

Japan Society for the Promotion of Science

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3