Investigations into the sensing mechanism of acoustic emission sensors for particle size measurement in a particular case: normal incidence

Author:

Zhang Guoqiang,Yan YongORCID,Hu Yonghui,Zheng Ge

Abstract

Abstract In situ continuous particle size measurement is desirable in a variety of industries. Acoustic emission (AE) is a particularly suitable technique to achieve on-line continuous sizing of particles in pneumatic conveying pipelines, which utilizes the AE signals due to the impact of particles with a waveguide protruding into the particle flow. Although early attempts have been made to reveal the relationship between the AE parameters and the particle size, the fundamental sensing mechanism of the AE-based technique for particle size measurement is still not established. For instance, the effect of particle size distribution on several AE parameters remains to be examined. This article aims to gain an in-depth understanding of the AE sensing mechanism for on-line particle sizing by quantifying the parameters of the AE signal, including peak amplitude, count, rise time, duration, energy and root-mean-square value. A theoretical model considering the energy dissipation during plastic impact is also developed to determine the particle size from the AE signal. The proposed method is verified through experimental tests with glass beads on a single-particle test rig. The experimental results obtained indicate that the proposed method is feasible to infer particle size information from the energy of an impact event. The particle size can be measured with a relative error mostly within ± 10 % over a range from 0.4 mm to 1.2 mm.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3