Point cloud simplification algorithm based on the feature of adaptive curvature entropy

Author:

Wang Guolin,Wu Lushen,Hu YunORCID,Song Minjie

Abstract

Abstract Considering the diversity of point cloud features, the simplification effects of traditional point cloud simplification algorithms (such as curvature, random and isometry simplification algorithms) are poor. To overcome these drawbacks, a point cloud simplification method based on adaptive curvature entropy is proposed. Points with large curvatures are extracted to construct the initial point cloud boundary by defining a given proportion. The point cloud is clustered using the dichotomy clustering method. Subsequently, a preliminary simplification based on an adaptive random algorithm is performed for each clustered point cloud to reduce the point cloud capacity. The curvature entropy of each clustered point cloud is calculated to remove redundant points and preserve feature points so that the simplified point cloud is eventually obtained. The extracted initial point cloud boundary and simplified point cloud constitute the final simplified result. The classic Stanford rabbit model is introduced to verify the effect of the proposed approach. Experimental results show that the proposed algorithm can effectively reflect the details of the point cloud despite a simplification proportion of up to 90%. Compared to traditional curvature simplification algorithms, the proposed method has the lowest deviation and highest accuracy at the same simplicity level, as numerous feature points are preserved, which facilitates the point cloud processing.

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3