Abstract
Abstract
This paper proposes a novel method to measure each constituent of an oil–gas–water mixture in a water continuous flow, typically encountered in many processes. It deploys a dual-plane electrical resistance tomography sensor for measuring dispersed phase volume fraction and velocity; a gradiomanometer flow density meter and a drift flux model to estimate slip velocities; with absolute pressure and temperature measurements. These data are fused to estimate constituent volume flow rates. Other commonly used operational parameters can be further derived: water cut or water liquid ratio (WLR) and gas volume fraction (GVF). Trials are described for flow rates of water 5–10 m3 h−1; oil 2–10 m3 h−1 and gas 1–15 m3 h−1. The comparative results are included with published data from the Schlumberger Gould Research flow facility. The paper proposes the use of the described configuration for measurement of volume flow rates in oil–gas–water flows with an absolute error of ±10% within GVF 9%–85% and WLR > 45%.
Subject
Applied Mathematics,Instrumentation,Engineering (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献