Anti-slosh effect of baffle configurations and air pressure on liquid sloshing in partially filled tank trucks

Author:

Wang QiongyaoORCID,Ping Kai,Xu Wenhua,Huang Jiarong,Tan Lingcao

Abstract

Abstract The phenomenon of liquid sloshing inside partially filled tank trucks adversely affects the stability of the tank trucks. In order to mitigate the negative effects of liquid sloshing inside the tank, this study proposes several baffle configurations and investigates their anti-slosh effect on liquid sloshing. First, a numerical model of liquid sloshing is established. Then, the effectiveness of the numerical model is validated by comparing the results of free surface deformation, wall pressure, and sloshing frequency obtained from simulations and experiments under identical conditions. During the research process, it was found that the air pressure formed in locally sealed spaces within the tank also plays a positive role in suppressing liquid sloshing. The research results indicate that, under low fill volumes, baffles fixed at the bottom of the tank are more effective in suppressing liquid sloshing inside the tank, while under high fill volumes, baffles fixed at the top of the tank are more effective. Considering the tank’s airtightness, the air pressure formed in locally sealed spaces within the tank plays an important role in suppressing liquid sloshing when baffles are fixed at the top of the tank and the fill volume is high.

Funder

Natural Science Foundation of Guangdong Province

GuangDong Basic and Applied Basic Research Foundation

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3