Structural damage identification with output-only strain measurements and swarm intelligence algorithms: a comparative study

Author:

Zhang Guangcai,Hou Jiale,Feng KunORCID,Wan ChunfengORCID,Xie LiyuORCID,Xue Songtao,Noori Mohammad,Ding Zhenghao

Abstract

Abstract The identification of structural damage with the unavailability of input excitations is highly desired but challenging since structural dynamic responses are affected by the coupling effect of structural parameters and external excitations. To deal with this issue, in this paper, an output-only damage identification strategy based on swarm intelligence algorithms and correlation functions of strain responses is proposed to identify structures subjected to single or multiple unknown white noise excitations. In the proposed strategy, four different population-based optimization algorithms—particle swarm optimization, the butterfly optimization algorithm, the tree seed algorithm, and a micro search Jaya (MS-Jaya)—are employed and compared. The micro search mechanism is integrated into a basic Jaya algorithm to improve its computational efficiency and accuracy by eliminating some damage variables with small values for the identified best solution after several iterations. The objective function is established based on the proposed auto/cross-correlation function of strain responses and a penalty function. The effectiveness of the proposed method is verified with numerical studies on a simply supported beam structure and a steel grid benchmark structure under ambient excitation. In addition, the effect of the reference point, number of sensors, and arrangement of strain gauges on the performance of the proposed method are discussed in detail. The investigated results demonstrate that the proposed approach can accurately detect, locate, and quantify structural damage with limited sensors and 20% noise-polluted strain responses. In particular, the proposed MS-Jaya algorithm presents a more superior capacity in solving the optimization-based damage identification problem than the other three algorithms.

Funder

National Key R&D Program of China

Japan Society for Promotion of Science

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Tohoku Institute of Technology Research Grant

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3