Quantification and mitigation of PIV bias errors caused by intermittent particle seeding and particle lag by means of large eddy simulations

Author:

Martins Fabio J W AORCID,Kirchmann JonasORCID,Kronenburg AndreasORCID,Beyrau FrankORCID

Abstract

Abstract In the present work, a standard large eddy simulation is combined with tracer particle seeding simulations to investigate the different PIV bias errors introduced by intermittent particle seeding and particle lag. The intermittency effect is caused by evaluating the velocity from tracer particles with inertia in a region where streams mix with different seeding densities. This effect, which is different from the vastly-discussed particle lag, is frequently observed in the literature but scarcely addressed. Here, bias errors in the velocity are analysed in the framework of a turbulent annular gaseous jet weakly confined by low-momentum co-flowing streams. The errors are computed between the gaseous flow velocity, obtained directly from the simulation, and the velocities estimated from synthetic PIV evaluations. Tracer particles with diameters of 0.037, 0.37 and 3.7 µm are introduced into the simulated flow through the jet only, intermediate co-flowing stream only and through both regions. Results quantify the influence of intermittency in the time-averaged velocities and Reynolds stresses when only one of the streams is seeded, even when tracers fulfil the Stokes-number criterion. Additionally, the present work proposes assessing unbiased velocity statistics from large eddy simulations, after validation of biased seeded simulations with biased PIV measurements. The approach can potentially be applied to a variety of flows and geometries, mitigating the bias errors.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3