Development and validation of a device for in vitro uniaxial cell substrate deformation with real-time strain control

Author:

Apa LORCID,Carraro S,Pisu SORCID,Peruzzi B,Rizzuto EORCID,Prete Z Del

Abstract

Abstract Substrate deformation affects the behaviour of many cell types, including bone, skeletal muscle and endothelial cells. Nowadays, in vitro tests are widely employed to study the mechanotransduction induced by substrate deformation. The aim of in vitro systems is to properly reproduce the mechanical stimuli sensed by the tissue in the cellular microenvironment. Accurate strain measurement and control is therefore necessary to ensure the cell senses the proper strain for the entire treatment. Different types of in vitro systems are commercially available or can be custom-designed; however, none of these devices performs a real-time measurement of the induced strains. In this study, we proposed a uniaxial strain device for in vitro cell stimulation with an innovative real-time strain control. The system was designed to induce sinusoidal waveform stimulation in a huge range of amplitude and frequency, to three silicone chambers stretched by a linear actuator. The real-time strain measurement and control algorithm is based on an optical tracking method implemented in LabVIEW 2015, and it is able to adapt the input amplitude to the linear motor, if necessary, hanging the stimulation signal for about 120 ms. Validation of the strain values measured during the real-time tracking algorithm was carried out through a comparison with the digital image correlation (DIC) technique. We investigated the influence of number of reference points and image size on the algorithm accuracy. Experimental results showed that the tracking algorithm allowed for a real-time measurement of membrane longitudinal strains with a relative error of 0.3%, on average, in comparison to the strains measured with DIC in post-processing analysis. We showed a high homogeneity of the strain pattern on the entire chamber base for different stimulation conditions. Finally, as proof of concept, we employed the uniaxial strain device to induce substrate deformation in a human osteosarcoma cell line (SaOS-2). The experimental results showed a consistent change in cell shape in response to the mechanical strain.

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3