Generative adversarial network and transfer-learning-based fault detection for rotating machinery with imbalanced data condition

Author:

Li JunORCID,Liu Yongbao,Li QijieORCID

Abstract

Abstract Intelligent fault diagnosis achieves tremendous success in machine fault diagnosis because of its outstanding data-driven capability. However, the severely imbalanced dataset in practical scenarios of industrial rotating machinery is still a big challenge for the development of intelligent fault diagnosis methods. In this paper, we solve this issue by constructing a novel deep learning model incorporated with a transfer learning (TL) method based on the time-generative adversarial network (Time-GAN) and efficient-net models. Firstly, the proposed model, called Time-GAN-TL, extends the imbalanced fault diagnosis of rolling bearings using time-series GAN. Secondly, balanced vibration signals are converted into two-dimensional images for training and classification by implementing the efficient-net into the transfer learning method. Finally, the proposed method is validated using two types of rolling bearing experimental data. The high-precision diagnosis results of the transfer learning experiments and the comparison with other representative fault diagnosis classification methods reveal the efficiency, reliability, and generalization performance of the presented model.

Funder

National Natural Science Foundation of China

the Royal Academy of Engineering through the Urban Flooding Research Policy Impact Programme

the Natural Science Independent Project of Naval University of Engineering

the Newton Advanced Fellowships from the NSFC and the UK Royal Society

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3