Evaluation of single-sided nuclear magnetic resonance technology for usage in geosciences

Author:

Costabel StephanORCID,Hiller ThomasORCID,Dlugosch RaphaelORCID,Kruschwitz SabineORCID,Müller-Petke MikeORCID

Abstract

Abstract Because of its mobility and ability to investigate exposed surfaces, single-sided (SiS) nuclear magnetic resonance (NMR) technology enables new application fields in geosciences. To test and assess its corresponding potential, we compare longitudinal (T 1) and transverse (T 2) data measured by SiS NMR with those of conventional geoscientific laboratory NMR. We use reference sandstone samples covering a broad range of pore sizes. Our study demonstrates that the lower signal-to-noise ratio of SiS NMR data generally tends to slightly overestimated widths of relaxation time distributions and consequently pore size distributions. While SiS and conventional NMR produce very similar T 1 relaxation data, unbiased SiS NMR results for T 2 measurements can only be expected for fine material, i.e. clayey or silty sediments and soils with main relaxation times below 0.05 s . This limit is given by the diffusion relaxation rate due to the gradient in the primary magnetic field associated with the SiS NMR. Above that limit, i.e. for coarse material, the relaxation data is strongly attenuated. If considering the diffusion relaxation time of 0.2 s in the numerical data inversion process, the information content > 0.2 s is blurred over a range larger than that of conventional NMR. However, our results show that principle range and magnitudes of the relaxation time distributions are reconstructed to some extent. Regarding these findings, SiS NMR can be helpful to solve geoscientific issues, e.g. to assess the hydro-mechanical properties of the walls of underground facilities or to provide local soil moisture data sets for calibrating indirect remote techniques on the regional scale. The greatest opportunity provided by the SiS NMR technology is the acquisition of profile relaxation data for rocks with significant bedding structures at the μm scale. With this unique feature, SiS NMR can support the understanding and modeling of hydraulic and diffusional anisotropy behavior of sedimentary rocks.

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3