An experimental apparatus to measure soot morphology at high pressures using multi-angle light scattering

Author:

Amin Hafiz M FORCID,Roberts William L

Abstract

Abstract In this work, a novel experimental setup is described which is designed and built specifically to study soot morphology using light scattering and extinction techniques at elevated pressures. The experimental setup consists of a counterflow burner housed inside a pressure vessel. A unique feature of this pressure vessel is the four curved optical windows which can provide the required optical access for light scattering measurements in order to infer the morphological parameters of soot. Using this setup, N 2-diluted ethylene and air counterflow flames are stabilized from 3 to 5 atm. Global strain rate (a) of 30 s−1 is maintained at all conditions and all the flames studied are soot formation (SF) flames. Light scattering by soot is measured between 15° to 165° at different locations along the axis of the burner. Ratio of total scattering to absorption (ρ sa), path averaged soot volume fraction (fv), mean primary particle size (d p), mean radius of gyration of aggregates (R gm) and fractal dimension (D f) are calculated from multi-angle light scattering and extinction data using Rayleigh–Debye–Gans theory for fractal aggregates (RDG-FA). ρ sa, fv, d p, and R gm increase as the pressure is raised. The scattering contribution in these measurements vary from 1.3% to 16% of absorption which suggests that wide angle optical access is essential for accurate measurements of fv. D f equal to 1.27 is measured near the flame at 3 atm which increases as the particles are convected away from the flame and D f increases to 1.98 at 5 atm.

Funder

King Abdullah University of Science and Technology

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3