A novel deep learning algorithm applied to machine vision inspection for surface defects of injection moulded products

Author:

Fan HaipengORCID,Qiu Zhongjun

Abstract

Abstract In modern industry, the surface defect inspection of injection moulded products is crucial for controlling product quality and optimising the manufacturing process. With the development of optical measurement and computer technology, machine vision inspection methods have been widely adopted instead of manual inspection. However, current machine vision inspection methods are difficult to simultaneously ensure the accuracy and efficiency of surface defect inspection of injection moulded products. Considering this problem, a novel deep learning algorithm applied to machine vision inspection for surface defects of injection moulded products is proposed. To train and evaluate the proposed deep learning algorithm, an image acquisition platform is established and the dataset of surface defects in moulded products is obtained. In the proposed deep learning algorithm, reparameterisation-based convolution modules are employed for feature extraction and feature fusion. A median iterative clustering algorithm based on hierarchical clustering initialisation is proposed to obtain prior anchors that are highly matched with the actual distribution of defect sizes. A novel focus-entire union over covering loss function is utilised for bounding box regression. On these bases, the proposed deep learning algorithm applied to machine vision inspection is evaluated on the dataset of surface defects in moulded products. The experimental results indicate that compared to the traditional inspection algorithms and other deep learning algorithms currently used in machine vision inspection, the proposed deep learning algorithm exhibits superior inspection accuracy and inspection efficiency on the acquired dataset. The inspection precision reaches 0.964, the inspection recall reaches 0.955, and the inference time for each subgraph is only 6.1 ms, confirming its effectiveness.

Funder

National Natural Science Foundation of China

Aeronautical Science Foundation of China

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3