An unsupervised intelligent fault diagnosis research for rotating machinery based on NND-SAM method

Author:

Zhang HaifengORCID,Zou Fengqian,Sang ShengtianORCID,Li Yuqing,Li Xiaoming,Hu Kongzhi,Chen Yufeng

Abstract

Abstract Currently, intelligent fault diagnostics of rotating machinery have significantly contributed to mechanical health monitoring. However, real-world labeled data obtained from high-value equipment such as gas turbine units, pumps, and other rotating components are occasionally insufficient for model training. This article proposes an unsupervised deep transfer learning model that can directly extract features from the data itself, thus reducing the number of training samples required. The well-designed neural network with a domain-specific antagonism mechanism aligns features between the source and target domains and so makes data-driven decisions more efficiently. The parameter-free gradient reversal layer is used as an optimizer, considerably reducing the cross-domain discrepancy and accelerating convergence. The average multi-classification accuracy under transferable conditions reaches 97%, 91%, and 95% over three cases of fault diagnosis. Moreover, the time consumption of the system improves by more than 3.5% compared to existing models. The results reveal that the suggested strategy is suitable for a challenging unlabeled dataset and represents a significant improvement over existing unsupervised learning techniques.

Funder

Powerchina Equipment Research Institute

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Reference45 articles.

1. Early fault detection of machine tools based on deep learning and dynamic identification;Luo;IEEE Trans. Ind. Electron.,2019

2. Artificial intelligence for fault diagnosis of rotating machinery: a review;Liu;Mech. Syst. Signal Process.,2018

3. Degradation data-driven time-to-failure prognostics approach for rolling element bearings in electrical machines;Wu;IEEE Trans. Ind. Electron.,2019

4. Online detection for bearing incipient fault based on deep transfer learning;Mao;Measurement,2020

5. Early-stage monitoring on faults of rolling bearings based on fractal feature extraction;Jiao,2017

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3