Bearing fault feature extraction method: stochastic resonance-based negative entropy of square envelope spectrum

Author:

Zhao Haixin,Jiang XiaomoORCID,Wang Bo,Cheng Xueyu

Abstract

Abstract The early identification of bearing defects has recently attracted increasing attention in the fields of condition monitoring and predictive maintenance because of the critical role of bearings on the reliability and safety of turbomachines. The weak features representing early faults in the vibration signals are often submerged in the environmental noise, which poses a major challenge for the early fault diagnosis of rolling bearings. This study proposes a negative entropy of the square envelope spectrum approach integrated with optimized stochastic resonance (SR)-based signal enhancement for accurate early defect detection of rolling element bearings. The proposed method considers the cyclostationarity and impulsivity of the raw signal, as well as its similarity with the enhanced signal, thus reinforcing the characteristic frequency while integrating the regularity of the raw signal to evaluate the SR performance. A comparison study with different existing methods using both numerical and experimental data was conducted to illustrate the effectiveness and accuracy of the proposed methodology for early defect detection of rolling element bearings in different locations. The results show that the proposed method improves the fault detection by 3.5 d earlier than other SR methods, and produces the best enhancement results for fault detection in the outer race, inner race, and rolling element of bearings, with the increase of characteristic frequency intensity coefficient by 126.3%, 118.1%, and 100.5% compared to traditional envelope signals, respectively.

Funder

Liaoning Province Science and Technology Program of China

University Cross-disciplinary Fundamental Research Program of DLUT

Provincial Key Program of Science and Technology of Liaoning

State Key Lab of Structural Analysis for Industrial Equipment Program of China

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3