Estimation of state of charge integrating spatial and temporal characteristics with transfer learning optimization

Author:

Zhang Yiwei,Liu Kexin,Chuang Yutong,Zhang JiusiORCID

Abstract

Abstract State of charge (SOC) estimation of lithium-ion batteries is of vital significance for the control strategy in battery management systems. To integrate the spatial and temporal characteristics of the data and to accomplish the transfer of knowledge, a novel convolutional neural network-bidirectional long short-term memory network based on transfer learning optimization (CNN-BiLSTM-TF) is proposed to estimate the SOC. Specifically, the spatial and temporal features hidden in the data are learned through CNN and BiLSTM, respectively. Furthermore, the CNN-BiLSTM network is established under one working condition and transferred to other working conditions through transfer learning, from which the SOC can be estimated online. A lithium-ion battery data set is applied to verify the proposed SOC estimation approach. The results of a case study demonstrate that the estimation performance of CNN-BiLSTM-TF is better than some existing approaches.

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3