Rolling bearing fault diagnosis based on the fusion of sparse filtering and discriminative domain adaptation method under multi-channel data-driven

Author:

Jiao ZonghaoORCID,Zhang ZhongweiORCID,Li Youjia,Wu Yuting,Liu Lu,Shao Sujuan

Abstract

Abstract Currently, the diagnostic performance of many deep learning algorithms may drop dramatically when the distribution of training data is significantly different from that of the test data. Moreover, the fault diagnosis approaches based on single-channel data may suffer problems such as large precision fluctuation, low reliability, and incomplete expression of fault features. To overcome the above deficiencies, a novel multi-channel data-driven fault recognition method based on the fusion of sparse filtering (SF) and discriminative domain adaptation (MSFDDA) is proposed in this article. Firstly, inspired by attention mechanisms and information fusion methods, a spectrum-based weighted multi-channel data fusion strategy is designed to fully utilize the data collected by sensors to obtain a more comprehensive representation of fault features. Then, the joint probability-based discriminative maximum mean discrepancy algorithm is introduced into the SF method to strengthen the capability of extracting the domain invariant features. Finally, two bearing datasets are employed to verify the validity of the MSFDDA method, which proved to be superior to other current domain adaptation methods.

Funder

Natural Science Foundation of Shandong Province

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3