Correction of phase errors due to leakage currents in wideband EIT field measurements on soil and sediments

Author:

Zimmermann EORCID,Huisman J AORCID,Mester AORCID,van Waasen SORCID

Abstract

Abstract Electrical impedance tomography (EIT) is a promising method to characterize important hydrological properties of soil, sediments, and rocks. The characterization is based on the analysis of the phase response of the complex electrical conductivity in a broad frequency range (i.e. mHz to kHz). However, it is challenging to measure the small phase response of low-polarizable soils and rocks in the higher frequency range up to 10 kHz. In order to achieve the required phase accuracy in the kHz frequency range, an optimized measurement system and advanced model-based processing methods have been developed. Recently, EIT measurements at sites with low electrical conductivity have shown a new dominating phase error related to capacitive leakage currents between cable shields and soil. In order to correct this phase error, we developed an advanced finite element model that considers both leakage currents and capacitive coupling between the soil and the cable shields in the reconstruction of the complex electrical conductivity distribution. This advanced model also takes into account potential measurement errors due to high electrode impedances. The use of this advanced model reduced the new dominating error for media with low electrical conductivity. It was also found that the amount of leakage current is an additional indicator for data quality that can be used for data filtering. After application of a novel data filter based on the leakage current and the use of the advanced modelling approach, the phase error of the measured transfer impedances above 100 Hz was significantly reduced by a factor of 6 or more at 10 kHz. In addition, physically implausible positive phase values were effectively eliminated. The new correction method now enables the reconstruction of the complex electrical conductivity for frequencies up to 10 kHz at field sites with a low electrical conductivity.

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3