An intelligent fault diagnosis method for rolling bearing using motor stator current signals

Author:

Ye Xiangbiao,Li GuofuORCID

Abstract

Abstract In the diagnosis of rolling bearing faults, the Motor Current Signature Analysis (MCSA) method offers advantages such as low cost, simplicity, and convenience compared to using vibration signals, temperature information, and other diagnostic objects. However, owing to the interference of high-frequency noise, power frequency, and its harmonics in current signals, which can severely affect the accuracy of bearing fault diagnosis, it is extremely challenging to use the original current signals during bearing faults directly for diagnostic purposes. Therefore, this paper proposes an intelligent fault diagnosis method based on the feature reconstruction (FR) method and convolutional neural networks (CNN). This method can achieve high-precision fault diagnosis using single-phase stator current signals from motors as the diagnostic objects. First, the FR method effectively removes the impact of high-frequency noise, supply frequency, and its harmonics from the current signals, while also highlighting subtle fault feature signals to a certain extent. Second, a CNN suitable for learning the characteristics of the current signals was constructed. Through feature extraction, learning, and classification of the current signal samples processed by the FR method, a diagnostic method with a high classification accuracy was obtained. Visualization techniques were used to present the final diagnosis results intuitively. The experimental results demonstrated the highest diagnostic accuracy and average diagnostic accuracy of the proposed method in diagnosing rolling bearing fault types, with an average diagnostic accuracy of approximately 99% for actual faulty bearing samples.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3