Abstract
Abstract
Accurate tool wear monitoring is crucial for increasing tool life and machining productivity. Although many prediction models can achieve high prediction accuracy, there are problems such as poor stability in the face of different working conditions or tool signals. A tool wear prediction method based on improved deep extreme learning machines (DELMs) was proposed as a solution to this issue; it uses the sparrow search algorithm (SSA) to upgrade the input weight of DELM to improve the model, and then extracts the time-domain, frequency-domain, and time-frequency domain characteristics from multi-sensor signals to construct and test the improved model SSA-DELM. The verification results show that the proposed model accurately reflects the tool wear. Meanwhile, the RMSE of the proposed model decreased by 53.39%, 19.95%, 43.86%, 23.80%, 24.80%, and 3.72%, respectively, and the MAE decreased by 67.81%, 17.87%, 32.70%, 29.90%, 30.30%, and 6.78%, respectively, compared to the with unimproved DELM, particle swarm optimization-least squares support vector machine, long short-term memory, stacked sparse autoencoder, recurrent neural network, and dung beetle optimizer-DELM.
Funder
Key R&D Program of China
Southwest University of Science and the Technology Doctoral Fund Program
Science and Technology Program of Sichuan Province
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献