Laser self-mixing interference displacement signal filtering method based on empirical mode decomposition and wavelet threshold

Author:

Guo ChangyingORCID,Wang Qi

Abstract

Abstract In laser self-mixing interferometry displacement measurement, noise interference has a significant impact on the measurement results. To improve measurement accuracy, this paper proposes a filtering method that combines empirical mode decomposition (EMD) with wavelet thresholding. First, the signal is decomposed into several intrinsic mode functions (IMFs) using EMD. Then, wavelet thresholding is applied to each IMF. Subsequently, the processed IMFs are reconstructed to achieve signal filtering. Finally, by integrating the principles of interpolation and fringe counting, the reconstructed displacement signal is recovered, realizing accurate displacement measurement. This paper presents comprehensive simulation analyses and experimental validations for the proposed method. The accuracy of the displacement recovery is quantitatively evaluated using the absolute error and standard error, comparing the recovered displacement signal with the actual displacement. The experimental results demonstrate that the laser self-mixing interferometry displacement signal filtering method based on EMD and wavelet thresholding has high accuracy.

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3