An in-situ thermoelectric measurement apparatus inside a thermal-evaporator

Author:

Nguyen Kien TrungORCID,Bui-Thanh GiangORCID,Pham Hong Thi,Nguyen-Tran ThuatORCID,Hoang Chi Hieu,Nguyen Hung QuocORCID

Abstract

Abstract At the ultra-thin limit below 20 nm, a film’s electrical conductivity, thermal conductivity, or thermoelectricity depends heavily on its thickness. In most studies, each sample is fabricated one at a time, potentially leading to considerable uncertainty in later characterizations. We design and build an in-situ apparatus to measure thermoelectricity during their deposition inside a thermal evaporator. A temperature difference of up to 2 K is generated by a current passing through an on-chip resistor patterned using photolithography. The Seebeck voltage is measured on a Hall bar structure of a film deposited through a shadow mask. The measurement system is calibrated carefully before loading into the thermal evaporator. This in-situ thermoelectricity measurement system has been thoroughly tested on various materials, including Bi, Te, and Bi2Te3, at high temperatures up to 500 K. Working reliably and precisely, the in-situ measurement system would help to study physics during film growth or speedup our search for better thermoelectric materials.

Funder

Tập đoàn Vingroup - Công ty CP

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3