stoBEST: an efficient methodology for increased spatial resolution in two-component molecular tagging velocimetry

Author:

Pearce MichaelORCID,Sparrow ZacharyORCID,Mabote Thabiso RORCID,Sánchez-González RodrigoORCID

Abstract

Abstract A new methodology to analyze two-component molecular tagging velocimetry image pairs is presented. Velocity measurements with high spatial resolution are achieved by determining grid displacements at the intersections as well as along the grid lines using a multivariate adaptive regression splines parameterization along the segments connecting adjacent grid intersections. The methodology can detect the orientation of the grid, contains redundant steps for increased reliability, and handles cases where parts of the grid are missing, indicating potential for automation. Initial demonstration of the algorithm’s performance was illustrated using synthetic data sets derived from Computational Fluid Dynamics simulations and compared to Hough-transform and cross-correlation methodologies. Besides providing comparable results in terms of precision and accuracy to previously reported methodologies, the analysis of images by the proposed methodology results in significantly increased spatial resolution of the flow displacement determinations along the grid lines with comparable precision and accuracy. This methodology’s ability to handle different grid orientations without modifications was assessed using synthetic datasets with grids formed by sets of parallel lines at 90, 45, and 30 degrees from the vertical axis. Comparable results in terms of precision and accuracy were obtained across grid orientations, with all uncertainties below 0.1 pixel for images with signal-to-noise levels exceeding 5, and within 0.5 pixel for the noisiest image sets.

Funder

National Science Foundation

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3