Improved lightweight federated learning network for fault feature extraction of reciprocating machinery

Author:

Zhang JunlingORCID,Duan LixiangORCID,Li Ke,Luo Shilong

Abstract

Abstract The working environment of reciprocating machinery is complex, characterized by nonlinear and non-stationary signals. Deep learning can solve the above problems, but it has its own problems such as complex model and large amount of parameters. Additionally, privacy considerations among enterprises prevent data sharing, leading to the emergence of ‘data islands’ and inadequate training of deep learning models. Based on the above analysis, this paper proposes a reciprocating mechanical feature extraction method based on an improved federated lightweight network. A lightweight network SqueezeNet model is used to solve the problems such as long training time of deep learning. By establishing a federated learning framework, the reciprocating mechanical data can be collectively diagnosed across various enterprises, thereby addressing the problem of limited model training caused by insufficient data. Furthermore, to enhance the accuracy of network training and diagnosis, modifications are made to the SqueezeNet network to reduce the number of model parameters while increasing the number and variety of feature extractions. Experimental results demonstrate that when the number of 1 × 1 and 3 × 3 channels is 1–7, the fault diagnosis accuracy is the highest, about 97.96%, which enriches the categories of feature extraction. The number of parameters in In-SqueezeNet is 56% of that in SqueezeNet network model, and the training time is reduced by nearly 15%. The fault diagnosis accuracy is increased from 95.1% to 97.3%, and the diversity of extracted features is increased. Compared with other network models such as ResNet, the improved lightweight federated learning network has a fault diagnosis accuracy of 96.6%, an improvement of 10.6%. At the same time, the training time was reduced to 1982s, a reduction of about 41.5%. The validity of the proposed model is further verified.

Funder

National Natural Science Foundation of China

the Strategic Cooperation Technology Projects of CNPC and CUPB

CNPC Project

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3