A temperature gradient evaluation method for determining temperature dependent thermal conductivities

Author:

Wilhelmy SönkeORCID,Zimare AntonORCID,Lippmann StephanieORCID,Rettenmayr Markus

Abstract

Abstract Details of an experimental set-up and an evaluation method for determining temperature dependent thermal conductivities from one-dimensional steady-state temperature distributions are presented. The method is validated by obtaining continuous values for the thermal conductivities of pure Ni in the temperature range between 440 K and 740 K, brass (Cu-30Zn) in the temperature range between 350 K and 650 K and a titanium aluminide (TiAl-TNM) in the temperature range between 400 K and 700 K. The results are in agreement with available literature data. The reported scatter in the literature on conductivities is caused by microstructural or/and compositional differences, which highlights the necessity for swift and accurate experimental determination of thermal properties. For this, the proposed temperature gradient evaluation method is especially suited as it allows the direct determination of thermal properties within large temperature intervals using only a single experimental run. The experimental effort for a comprehensive study of a material is thus drastically reduced as compared to the conventional method of determining thermal conductivity from measured thermal diffusivities and heat capacities. The experimental set-up additionally allows the independent determination of thermal diffusivity as function of temperature. No prior knowledge of any material properties of a given sample is necessary.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3