Automated defect detection in precision forging ultrasonic images based on deep learning

Author:

Zhao JianjunORCID,Zhang Yuxin,Du Xiaozhong,Sun Xiaoming

Abstract

Abstract Ultrasonic testing is a widely used non-destructive testing technique for precision forgings. However, assessing defects in ultrasonic B-scan images can be prone to errors, misses, and inefficiencies due to human judgment. To address these challenges, we propose a method based on deep learning to automate the evaluation of such images. We started by creating a dataset comprising 8000 images, each measuring 224 × 224 pixels. These images were cropped from ultrasonic B-scan images of 7 specimens, each featuring different sizes and locations of holes and crack defects. We then used state-of-the-art deep learning models to benchmark the dataset and identified YOLOv5s as the best-performing baseline model for our study. To address the challenges of deploying deep learning models and the issue of small defects being easily confused with the background in ultrasonic B-scan images, we made lightweight improvements to the deep learning model. Additionally, we enhanced the quality of data labels through data cleaning. Our experiments show that our method achieved a precision of 97.8%, a recall of 98.1%, mAP@0.5 of 99.0%, and mAP@.5:.95 of 67.6%, with a frames per second (FPS) of 74.5. Furthermore, the number of model parameters was reduced by 43.2%, while maintaining high detection accuracy. Overall, our proposed method offers a significant improvement over the original model, making it a more reliable and efficient tool for automated defect assessment in ultrasonic B-scan images.

Funder

Natural Science Foundation of Shanxi Province, China

General Project of the National Natural Science Foundation of China

Postgraduate Education Innovation Project

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Reference25 articles.

1. Scanning path planning of ultrasonic testing robot based on deep image processing;Zhao;Russ. J. Nondestruct. Test.,2022

2. An improved automated ultrasonic NDE system by wavelet and neuron networks;Bettayeb;Ultrasonics,2004

3. Classification of ultrasonic signals;Matz;Int. J. Mater. Prod. Technol.,2006

4. Classification of defects by the SVM method and the principal component analysis (PCA);Khelil;Int. J. Electr. Comput. Eng.,2007

5. Automatic defect classification in ultrasonic NDT using artificial intelligence;Sambath;J. Nondestruct. Evaluation,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3