A fault diagnosis framework based on heterogeneous ensemble learning for air conditioning chiller with unbalanced samples

Author:

Jia ZhenORCID,Yao Guoyu,Zhao KeORCID,Li YangORCID,Xu Peng,Liu Zhenbao

Abstract

Abstract Big data-based air conditioning fault diagnosis research has developed rapidly in recent years, but in actual engineering, the fault sample size of air conditioning systems is much smaller than the normal sample size, and the resulting sample imbalance problem makes conventional data-driven diagnostic methods based on low accuracy and poor stability. In order to solve the problem of unbalanced fault diagnosis of air-conditioning chillers, this paper proposes an integrated learning-based diagnostic model, which achieves diagnosis by combining multiple base models and by majority voting. The method uses four classification models, namely, random forest model, decision tree model, k nearest neighbor model, and isomorphic integration model, as base classifiers, and synthesizes the four base classifiers into a heterogeneous integration algorithmic model (IMV) through integrated learning, and performs diagnostic detection of seven types of typical faults of chiller units using the majority voting method of integrated learning. The effectiveness of the proposed algorithm is verified on the RP-1043 dataset, and the experimental results show that the accuracy of the heterogeneous integrated algorithm model (IMV) can reach 96.87%, which is a significant improvement compared with the accuracy of the other four base classifier models (81.04%–96.25%). Therefore, the integrated learning model has some application prospects in fault diagnosis when targeting unbalanced datasets.

Funder

National Natural Science Foundation of China

Shaanxi Provincial Natural Science Basic Research Program

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fault diagnosis method of welding robot bearing based on deep integration of multiple information;Proceedings of the 2024 3rd International Symposium on Control Engineering and Robotics;2024-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3