Self-powering vibration sensor based on a cantilever system with a single-electrode mode triboelectric nanogenerator

Author:

Hosangadi Prutvi Sagar,Korrapati Mallikarjuna,Gupta DiptiORCID

Abstract

Abstract Here, we report a vibration sensor based on a single-electrode mode triboelectric nanogenerator (TENG). The main objective of this study is to develop a vibration sensor (architecture) that can be employed in any application with minor design changes to meet individual objectives. Hence, a cantilever-based vibration system is selected, which offers optimum design control in fine-tuning the sensor to operate in the desired frequency spectrum. The cantilever’s proof mass is suspended by isotropic linear elastic material constituting a scalable and tunable cantilever–mass system. The oscillations create contact separation between the triboelectric-active layers (i.e. fluorinated ethylene–propylene copolymer and screen-printed zinc oxide), which develop triboelectric waveforms. This voltage waveform is used for both sensing and powering mechanisms. At resonance, the device produces peak-to-peak voltage, short-circuit current, and power density of 25 V, 10 µA, and 1.38 W m−2, respectively. To measure the influence of change in cantilever properties, we varied the number of cantilevers and evaluated the sensor performance. The sensor is reliable with >99% accuracy in a broad frequency range of 0–400 Hz. The sensor exhibits a maximum sensitivity of 14 V g−1 and can charge a 1 µF capacitor to 2.75 V in <150 s. The sensor is further tested on a lab-scale vacuum pump with known (induced) faults to estimate the sensor’s competence in detecting the machinery faults. Considering the market acceptability, the sensor is developed with established manufacturing techniques such as screen-printing, and laser cutting. This study hopes to bridge the lab-to-market gap for TENG-based (vibration) sensors.

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Reference43 articles.

1. Review of automatic fault diagnosis systems using audio and vibration signals;Henriquez;IEEE Trans. Syst. Man, Cybern. Syst.,2014

2. In situ monitoring of FDM machine condition via acoustic emission;Wu;Int. J. Adv. Manuf. Technol.,2016

3. On the use of temperature for online condition monitoring of geared systems—a review;Touret;Mech. Syst. Signal Process.,2018

4. Diagnostics of stator faults of the single-phase induction motor using thermal images, MoASoS and selected classifiers;Glowacz;Meas. J. Int. Meas. Confed.,2016

5. Fuzzy logic based fault detection in induction machines using lab view;Kumar;J. Comput. Sci.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3