Abstract
Abstract
This study investigates photomultiplier tube (PMT) nonlinearities, relevant for lifetime phosphor thermometry, at various decay times to assess and minimize the impact on temperature measurement accuracy. The focus is single-shot measurements performed in harsh environments where phosphor signal attenuation often is a concern. The sensitivity of decay time measurements to changing phosphorescence intensity is therefore investigated. The experimental results show that for the studied phosphors and detectors, shorter decay times between 20 ns and 6 µs, saturation effects in the PMTs decreased the measured decay time with increasing signal attenuation. For longer phosphorescence decay times, in the millisecond regime, nonlinearity effects led to an increase in the measured decay time with increasing signal attenuation. The specific detector nonlinearity response will vary among detectors, but the introduced methodology for detector analysis is a useful resource for assessing and improving accuracy in lifetime phosphor thermometry measurements.
Funder
Swedish Research Council/Swedish Energy Agency
Centre for Combustion Science and Technology (CECOST) funded by the Swedish Energy Agency
Subject
Applied Mathematics,Instrumentation,Engineering (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献