A dynamic object removing 3D reconstruction system based on multi-sensor fusion

Author:

Zhao Chenxi,Liu Zeliang,Pan Zihao,Yu LeiORCID

Abstract

Abstract Currently, one of the key technologies for autonomous navigation of unmanned mobile robots is SLAM, which faces many challenges in practical applications. These challenges include a lack of texture, deterioration in sensor performance, and interference from moving objects in dynamic outdoor environments, all of which have an impact on the mapping system. To address these issues, this paper proposes a framework for lidar, vision camera, and inertial navigation data, resulting in fusion and dynamic object removing. The system consists of three sub-modules: the Lidar-Inertial Module (LIM), the Visual-Inertial Module (VIM), and the Dynamic-Object-Removing Module (DORM). LIM and VIM assist each other, with lidar point clouds providing three-dimensional information for the global voxel map and the camera providing pixel-level color information. At the same time, the DORM performs synchronous dynamic object detection to remove dynamic objects from the global map. The system constructs a multi-sensor factor graph using the state and observation models, and the optimal solution is obtained using least squares. Furthermore, this paper employs triangle descriptors and bundle adjustment methods for loop closure detection in order to reduce accumulated errors and maintain consistency. Experimental results demonstrate that the system can perform clean state estimation, dynamic removing and scene reconstruction in a variety of complex scenarios.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Reference32 articles.

1. Real-time loop closure in 2D LIDAR SLAM;Hess,2016

2. The simultaneous localization and mapping (SLAM)-an overview;Alsadik;J. Appl. Sci. Technol. Trends,2021

3. Review on simultaneous localization and map (SLAM);Khairuddin,2015

4. LOAM: lidar odometry and mapping in real-time;Zhang,2014

5. LeGO-LOAM: lightweight and ground-optimized lidar odometry and mapping on variable terrain;Shan,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3