EDASNet: efficient dynamic adaptive-scale network for infrared pedestrian detection

Author:

Liu YangORCID,Zhang MingORCID,Fan FeiORCID,Yu DahuaORCID,Li JianjunORCID

Abstract

Abstract Infrared images are widely utilized due to their exceptional anti-interference capabilities. However, challenges such as low resolution and an absence of detailed texture can impede the effective recognition of multi-scale target information, particularly for small targets. To address these issues, we introduce a multi-scale detection framework named efficient dynamic adaptive-scale network (EDASNet), which focuses on enhancing the feature extraction of small objects while ensuring efficient detection of multi-scale. Firstly, we design a lightweight dynamic enhance network as the backbone for feature extraction. It mainly includes a lightweight adaptive-weight downsampling module and a dynamic enhancement convolution module. In addition, a multi-scale aggregation feature pyramid network is proposed, which improves the perception effect of small objects through a multi-scale convolution module. Then, the Repulsion Loss term was introduced based on CIOU to effectively solve the missed detection problem caused by target overlap. Finally, the dynamic head was used as the network detection head, and through the superposition of dynamic convolution and multiple attention, the network was able to accurately realize multi-scale object detection. Comprehensive experiments show that EDASNet outperforms existing efficient models and achieves a good trade-off between speed and accuracy.

Funder

National Natural Science Foundation of China

First-Class Discipline Scientific Research Special Project of the Inner Mongolia Autonomous Region Department of Education

Natural Science Foundation of Inner Mongolia Autonomous Region

Central Government Guides Local Science and Technology Development Fund Project of China

Fundamental Research Funds for Inner Mongolia University of Science & Technology

Publisher

IOP Publishing

Reference58 articles.

1. A thermal infrared dataset for evaluation of short-term tracking methods;Berg,2015

2. Distinctive image features from scale-invariant keypoints;Lowe;Int. J. Comput. Vis.,2004

3. Histograms of oriented gradients for human detection;Navneet,2005

4. Rapid object detection using a boosted cascade of simple features;Viola,2001

5. A training algorithm for optimal margin classifiers;Boser,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3