Weak fault feature extraction of rolling element bearings based on ensemble tunable Q-factor wavelet transform and non-dominated negentropy

Author:

Gu XiaohuiORCID,Yang Shaopu,Liu Yongqiang,Liu Zechao,Hao Rujiang

Abstract

Abstract Tunable Q-factor wavelet transform (TQWT) has been proven to be usable in the fault diagnosis of rolling element bearings; however, its performance is heavily dependent on the selection of the Q-factor for decomposition and the optimal subband for reconstruction. In this paper, a novel method based on ensemble TQWT and non-dominated negentropy is proposed for weak repetitive transient extraction. Firstly, the vibration signal is decomposed with couples of Q-factors and redundancies to match the fault-induced oscillatory behaviors. Then, negentropy is utilized to evaluate the square envelopes and square envelope spectra of all subband signals from impulsiveness and cyclostationarity, respectively. After that, Pareto filtering is performed to search for the non-dominated set, and the knee point in the Pareto front is drawn on a distance metric for decision-making of the optimal subband. Finally, single branch reconstruction of the optimal subband is conducted to identify the fault characteristics for diagnosis. The effectiveness of the proposed non-dominated negentropy in weak fault feature extraction of rolling element bearings is verified by both simulation and experimental case studies. Furthermore, comparative studies also demonstrate its superiority over three peer ensemble TQWT methods.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Research Fund of Hebei Education Department

Natural Science Foundation of Hebei Province

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3