Transfer Learning for Bearing Fault Diagnosis based on Graph Neural Network with Dilated KNN and Adversarial Discriminative Domain Adaptation

Author:

Tang TangORCID,Liu ZeyuanORCID,Qiu Chuanhang,Chen Ming,Yu Ying

Abstract

Abstract Graph neural networks (GNNs) have emerged as a forefront in deep learning, notably influencing research in mechanical fault diagnosis. Transfer learning, particularly through domain adaptation (DA) techniques, has found application in machinery fault diagnosis by training models under one working condition and deploying them under another. While efforts have been made to integrate GNNs with DA techniques to alleviate data distribution discrepancies by investigating the inter-sample relationships, challenges persist: reliance on K-nearest neighbor (KNN) for graph generation emphasizes close relationships, neglecting distant ones; batch processing limits real-time fault diagnosis; and transfer between different-sized bearings is nearly unexplored. To address these limitations, a novel framework for GNN-based domain adaptation in machinery fault diagnosis is proposed. Initially, a convolutional neural network extracts node embeddings from the continuous wavelet transform graph of raw vibration signals. Subsequently, a graph generation layer based on dilated KNN captures both close and distant sample relationships, addressing the long-range dependency issue. Two GNN blocks are then applied for inter-sample relationships investigation and further feature extraction with the outputs directed to a linear classifier during source domain pretraining. Following pretraining, adversarial discriminative domain adaptation is leveraged to mitigate domain distribution discrepancies. Additionally, a novel graph construction method that combines existing training samples with a new single sample is proposed, enabling fault prediction with single instances for real-time online fault diagnosis. Evaluation on datasets with varying working conditions and bearings of different sizes demonstrates the superior performance of our method to other comparison methods.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3