Composite fault feature extraction of rolling bearing using adaptive circulant singular spectrum analysis

Author:

Zhou HongdiORCID,Zhu Lin,Zhong Fei,Cai YijieORCID

Abstract

Abstract Aiming to extract the weak composite fault characteristics of a rolling bearing under harsh operation conditions, a novel composite fault diagnosis method for bearings based on adaptive circulant singular spectrum analysis (ACiSSA) is proposed. The proposed method is able to adaptively obtain the eigenvalue of a non-stationary vibration signal in any dimension, and effectively reassemble the same frequency components and improve the signal-to-noise ratio (SNR). Specifically, circulant singular spectrum analysis is utilized to decompose the raw signal, and the optimal parameters, i.e. the embedding dimension and threshold value of cumulative contribution, are selected to maximum kurtosis through the grey wolf optimization method. The signal is reconstructed with high SNR according to the effective singular spectrum components. Envelope demodulation analysis is then implemented to extract the characteristic defect frequency in the reconstructed signal. Finally, feature extraction performance is quantitatively evaluated, and experimental results show that the proposed ACiSSA method is able to extract more sensitive features under more noisy conditions compared with other common methods, with higher computational efficiency.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3