A hybrid intelligent rolling bearing fault diagnosis method combining WKN-BiLSTM and attention mechanism

Author:

Wang Jiang,Guo JunyuORCID,Wang Lin,Yang Yulai,Wang Zhiyuan,Wang Rongqiu

Abstract

Abstract Fault diagnosis of rolling bearings helps ensure mechanical systems’ safety. The characteristics of temporal and interleaved noise in the bearing fault diagnosis data collected in the industrial field are addressed. This paper proposes a hybrid intelligent fault diagnosis method (WKN-BiLSTM-AM) based on WaveletKernelNetwork (WKN) and bidirectional long-short term memory (BiLSTM) network with attention mechanism (AM). The WKN model is introduced to extract the relevant impact components of defects in the vibration signals, reduce the model training parameters and facilitate the processing of signals containing noise. Then, the fusion of spatial-temporal features is achieved by combining BiLSTM networks to compensate for the lack of individual networks that ignore the dependent information between discontinuous sequences. Finally, the AM module is introduced to improve the feature coding performance of BiLSTM and fault diagnosis accuracy. Comparison and validation between the proposed WKN-BiLSTM-AM method and other state-of-the-art models are given on the Case Western Reserve University and Paderborn University datasets. The experimental results verify the effectiveness of the proposed model in bearing fault diagnosis, and the model’s generalization capability.

Funder

Joint Fund of Key Laboratory of Oil & Gas Equipment, Ministry of Education (Southwest Petroleum University) and Honghua Group Co., Ltd

Natural Science Foundation of SiChuan, China

Sichuan Science and Technology Program

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3