A bearing fault diagnosis method with improved symplectic geometry mode decomposition and feature selection

Author:

Chen ShengfanORCID,Zheng XiaoxiaORCID

Abstract

Abstract A rolling bearing fault diagnosis method based on improved symplectic geometry mode decomposition (SGMD) and feature selection was proposed to solve the problem of low fault identification due to the influence of noise on early bearing fault features. First, the SGMD SGMD is improved to enhance its robustness in decomposing signals with noise, then the time domain, frequency domain, and time-frequency features of each symplectic geometric component are extracted as feature vectors. Second, a comprehensive feature selection strategy is proposed to select the optimal subset of features that are conducive to fault classification. Finally, considering the problem of low classification accuracy of a single machine learning model, the AdaBoost-WSO-SVM model is constructed for fault classification using the AdaBoost algorithm of integrated learning. Experimental decomposition of complex signals with noise indicates that the improved SGMD is more effective compared to traditional SGMD. Subsequently, multiple experiments were conducted using the bearing datasets from Case Western Reserve University (CWRU) and Jiangnan University (JNU). The experimental results reveal that, after comprehensive feature selection and ensemble learning pattern recognition experiments on the CWRU dataset, the average accuracy of fault diagnosis can reach 99.67%. On the JNU dataset, the proposed fault diagnosis method achieves an average accuracy of 95.03%. This suggests that, compared to other feature selection methods and classification models, the proposed approach in this paper exhibits higher accuracy and generalization capabilities.

Funder

Engineering Research Center of Offshore Wind Power Technology Education

Publisher

IOP Publishing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3