A novel multi-adversarial cross-domain neural network for bearing fault diagnosis

Author:

Jin GuoqiangORCID,Xu KaiORCID,Chen HuaianORCID,Jin YiORCID,Zhu ChanganORCID

Abstract

Abstract Recently, deep neural networks have achieved great success in bearing fault diagnosis. Most existing methods are developed under the assumption that the bearing vibration signals are collected under the same machine operating conditions. However, bearing fault diagnosis under cross-domain conditions will suffer from domain shift problems if the neural network is only trained with the source domain data. Moreover, acquiring enough labeled data from the target domain will be expensive and time-consuming. To address the above problems, this paper proposes an end-to-end multi-adversarial cross-domain neural network for bearing fault diagnosis, which takes labeled source domain data and unlabeled target domain data to achieve the cross-domain bearing fault diagnosis under cross-load conditions and cross-machine conditions. The proposed method employs multi-adversarial training to automatically extract the domain-invariant features from source and target domains instead of manually designing features, which combines domain-adversarial learning and mini-max entropy adversarial learning to adversarially reduce the domain discrepancy between the source and target domains and alleviate the class misalignment problem. The results of the cross-load and the cross-machine experiments prove the effectiveness of the proposed method, and the proposed method provides a promising tool for cross-domain bearing fault diagnosis.

Funder

National Natural Science Foundation of China

National Major Scientific Instruments and Equipments Development Project of the National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3