Surface defect detection and semantic segmentation with a novel lightweight deep neural network

Author:

Huang Qiang,Li Fudong,Yang YuequanORCID,Tao Xian,Li Wei,Wang Xu,Wang Yong

Abstract

Abstract Current approaches to defect detection and segmentation make essential use of machine learning methods. To develop lightweight models is one of key tasks for many defect detection and segmentation applications. In this work, we present a lightweight trilateral parallel feature extraction with multi-feature aggregation network (TriMFANet) for surface defect detection and segmentation. In TriMFANet, the top lateral is the feature-rich extraction used to capture detailed information. The other two laterals, efficient semantic feature extraction (ESFE) and reverse ESFE, leverage Hadamard product attention to jointly extract deep-level global feature information. Additionally, the MFA module employs origin-symmetric sigmoid attention to enhance deep feature information and integrates the triple features. We conducted binary defect segmentation tasks on the SD-saliency-900 and RSDDs datasets, achieving outstanding performance in both S α and E ξ . For multi-class defect detection tasks on the NEU-Seg and MSD datasets, we rank first with mIoU scores of 79.0% and 81.2% respectively. Experimental results demonstrate that our lightweight model with only 90 K parameters exhibits excellent performance.

Funder

Practice Innovation Program of Jiangsu Province

the Binzhou Institute of Technology

the Youth Innovation Promotion Association CAS

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3