Optical temperature measurement in unsteady plasma free jet

Author:

Hermann TobiasORCID,Keun Chang Eric WonORCID

Abstract

Abstract An Argon plasma free jet is investigated using spectrally narrow bandpass filtered high-speed imaging. The images were captured at 16 kHz with an exposure time of 3.9 μs and then calibrated for absolute radiance. The free jet exhibited behaviour consistent with turbulent free shear flow and maintains an axisymmetric shape. Significant local fluctuations were observed over time, growing in strength and size as the flow convected downstream. Assuming local thermodynamic equilibrium and self-similar free-jet temperature profiles, the flow radiance is used to determine the local plasma temperature and the jet width. Then, both steady and unsteady flow models were applied to account for the jet fluctuation. In regions of low fluctuations near the nozzle exit, both models show good agreement for centreline temperatures, measuring approximately 11 200 K. In regions of significant fluctuations, the assumption of steady flow leads to an overestimation of 32% for temperature, 18% for jet width, and 41% for total jet power. The unsteady analysis approach results in lower temperatures and smaller jet widths while simultaneously satisfying momentum and energy conservation.

Funder

UK Research and Innovation

John Fell Fund, University of Oxford

Royal Society

Publisher

IOP Publishing

Reference39 articles.

1. Thermal protection system technology and facility needs for demanding future planetary missions;Laub,2003

2. Assessment of high enthalpy flow conditions for re-entry aerothermodynamics in the plasma wind tunnel facilities at IRS;Loehle;CEAS Space J.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3