A robust intelligent fault diagnosis method for rotating machinery under noisy labels

Author:

Chen Chengyuan,Wang YiORCID,Ruan Hulin,Qin YiORCID,Tang BaopingORCID

Abstract

Abstract Despite achieving considerable success, the fault diagnosis methods will still be disturbed by noisy labels, this causes the model’s degradation and reduced diagnostic precision. Focused on solving the above issues, a robust intelligent fault diagnosis approach for rotating machinery under noisy labels is proposed. Firstly, we maintain two deep neural networks (DNNs) and alternatively execute parameters updating and models optimization by referring to the Co-teaching strategy, which can maximize filtering different error types and implement pre-training of DNNs. Secondly, adopting a two-component Gaussian mixture model (GMM) to fit training dataset’s cross-entropy (CE) loss and realize the clean and noisy labels division according to the threshold. Then, a data augmentation method called Mixup operation is employed in semi-supervised learning (SSL) to increase noise robustness and avoid error accumulation, subsequently, performing fine-tuning and correction for clean and noisy samples. Challenging experiments on a transmission gearbox dataset under different noisy labels levels show that the proposed method has robustness to noise and significantly surpasses other approaches, which provides an important reference value for accurate fault diagnosis for rotating equipment parts with noisy labels.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3